4%, UNIVERSITY OF MINNESOTA [N/ V =l Moo=

An Efficient Data Sharing Scheme for
ISCSI-Based File Systems

Dingshan He and David H.C. Du
Department of Computer Science and Engineering
DTC Intelligent Storage Consortium
University of Minnesota
{he,du}@cs.umn.edu

NASA/IEEE MSST 2004
th NASA Goddard/21st IEEE Conference on

Mass Storage Systems & Technologies
The Inn and Conference Center
University of Maryland University College . .
Adelphi MD USA COMPUTER

April 13-16, 2004 SOCIETY

ISCSI-based Storage Systems

 Network attached
e Shared repository
« Block-level access 551 Tene Subenaen

IP Network

‘\7

A&, UNIVERSITY OF MINNESOTA

ISCSI-Based File Systems

e FS iIs unaware of sharing iISCSI Initiator
storage

» iSCSI target read/write Al SyBEms
physical blocks dumbly | |iSCSI Device Driver

« Network connectionis NIC

over WAN. Therefore,
client caching is a must

A&, UNIVERSITY OF MINNESOTA DiGITAL TECHNOLGY CENTER

Data Sharing Conflicts

« Client cache may ISCSI Initiators
conflict with data
on target

e Client cache may
conflict with other
client caches

e Concurrency Control
IS @ must

Our Contributions

* Locking mechanism for concurrency control
— Separate metadata and data locking mechanisms
— Metadata: Semi-preemptible Sharing Locking
— File Data: Hierarchical Locking

 Callback based mechanism for client cache
consistency

* Transaction file sharing semantics to support
transaction applications

A&, UNIVERSITY OF MINNESOTA DigimAL TECHNQLGY CENTER

Architecture Overview

1SCSI intiator kernel 1SCSI target kernel

System call layer

open file manager
.. .. ; - Target
Local Local iSCSI iSCS] he
FS 1 FS 2 client o '33
stack manager
Initiator
Buffer cache cache Buffer cache
manager
Driver | | Driver ‘ | Driver Driver | | Driver ‘ | Driver
Network MNetwork
portal portal

Local disks Logical units

A&, UNIVERSITY OF MINNESOTA DiGITAL TECHNOLGY CENTER

LLocks on Metadata Object

* Roselli et al. found the percentage of
metadata reads >> metadata writes

e Shared lock can be cached at initiator

» Exclusive lock request invalidates cached
shared locks

« Exclusive lock granted after all invalidation
responses received

A&, UNIVERSITY OF MINNESOTA DieITAL TECHNOLGY CENTER

LLocks on File Data

 Locking granularity is a design tradeoff

— Fine granularity: high concurrency, but high
overhead

— Coarse granularity: Low overhead, but low
concurrency

» Hierarchical locking balances between
concurrency and overhead

A&, UNIVERSITY OF MINNESOTA DiGITAL TECHNOLGY CENTER

Client Cache Consistency

e« TCM maintain Initiator Cache Managers
one BCB for
each ICM

e Block read sets
bitmap

 Block write
causes callback

I
/

Block
Callback
Bitmaps

SIojng %90|g

Target Cache Manager

A&, UNIVERSITY OF MINNESOTA ;&m& TECHNOLGY CENTER:

Transaction File Sharing

Semantics
o Several operations are grouped as a
transaction
 Locks are held throughout a transaction
* Deadlock could happen
* Rollback is supported

A&, UNIVERSITY OF MINNESOTA DiGITAL TECHNOLGY CENTER

Thank you!

A&, UNIVERSITY OF MINNESOTA

TECHNOLGY CENTER

File System Objects

e Metadata objects
— Directory file — I-node + directory data blocks
— Normal file — I-node + Indirect blocks
— Super block

— |-node bitmap blocks

— Data-block bitmap blocks
e Normal data

— Data blocks

A&, UNIVERSITY OF MINNESOTA DiGITAL TECHNOLGY CENTER

Semi-preemptible Shared Lock

e M _S: gives share access to the Ms | Mx
requested object

e M_X: gives exclusive access to the
requested object

e Semi-preemptible Shared Locking
— Caching of M_S lock

— Request M_X lock each time,
and release after

M_S

M_X

* conflict

A&, UNIVERSITY OF MINNESOTA DiGITAL TECHNOLGY CENTER

Two-Tier File Data Organization

Open File

Loeical data blocks

A&, UNIVERSITY OF MINNESOTA DiGITAL TECHNOLGY CENTER

Hierarchical Locks on File Data
e [ntention Locks (D _IS,D _IX)

are only used on file level b5 [b_x [_1s[p_ix
e D Sand D_X can be used on D_S

both levels bx| *
= Open operation requests a lock | —{-

(D_IS, D _IX,D_S, D _X) for
the whole file * conflict

e Read/write operations on a
specific logical block requests
D _S/D_X locks on the block

group
PRE———

Inside 1ISCSI Client

1SCSI client

Transaction table

r-node table

disk
r-node

metadata
counter el

Kaip

[
/] data block
] group lock record

A&, UNIVERSITY OF MINNESOTA

transaction number type parameters

i DpEI:I file stn:lcture i

metadata
lock

aroup
locks

dirty
blocks

T
!
¥
i

: g{éé

BiGITAL TECHNOLGY CENTER

Inside ISCSI Target

15CSI target

Transaction table

Open file table

Metadata lock manager
Open file manager

block group record == group locking record
E= file locking record (55 group waiting record
] file waiting record

callback
bitmap

s group upgrading record

FLQ - File Locking Queue GLQ - Group Locking Queue
FW() - File waiting Queue GWQ - Group Waiting Queue
GUQ - Group Upgrading Queue

4%, UNIVERSITY OF MINNESOTA DIGITAL TECHNOLGY CENTER

© 2000
L [
3 1500
s 3 |
Q< 1000
= ¢
I 500 |
[HEN
o
o
(=3
o
w 2000
. .
fa}) [
= 1500}
n
< < 1000}
I £
E;' 500
»

Group Size 1

Il block read/write
I metadat locks
[data locks

[transaction overhead ||

I ohters

A

2KB 4KB 8KB
block size

Group Size 4

Il block read/write
I metadat locks
[data locks

[transaction overhead ||

[ohters

i =N I_. I

2KB 4KB 8KB
block size

A&, UNIVERSITY OF MINNESOTA

time (sec)

time (sec)

2000
1500
1000}

500

2000
1500
1000

500

Scheme Overhead

Group Size 2

Il block read/write
I metadat locks

[data locks |
[transaction overhead |]

I ohters

i I.—. I_.

2KB 4KB 8KB
block size

Group Size 8

Il block read/write
I metadat locks

[data locks]
[transaction overhead |]

[ohters

2KB 4KB 8KB
block size

*W TECHNOLGY CENTER

	iSCSI-based Storage Systems
	iSCSI-Based File Systems
	Data Sharing Conflicts
	Our Contributions
	Architecture Overview
	Locks on Metadata Object
	Locks on File Data
	Client Cache Consistency
	Transaction File Sharing Semantics
	
	File System Objects
	Semi-preemptible Shared Lock
	Two-Tier File Data Organization
	Hierarchical Locks on File Data
	Inside iSCSI Client
	Inside iSCSI Target
	Scheme Overhead

